ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Διαφορικός Λογισμός
Πρώτες μερικές παράγωγοι και προσδιορισμός τιμών τους σε σημείο.
Clear["Global`*"]
f[x_, y_] := 1/(x^2 + y^2 + 1);
fDx[x_, y_] := Evaluate[D[f[x, y], x]]
fDy[x_, y_] := Evaluate[D[f[x, y], y]]
fDx[x, y]
fDx[2,3]
Derivative[1, 0][f][2, 3]
Derivative[0, 1][f][2, 3]
Ανώτερες μερικές παράγωγοι και προσδιορισμός τιμών τους σε σημείο.
fxx[x_, y_] := Evaluate[D[f[x, y], {x, 2}]]
fxy[x_, y_] := Evaluate[D[f[x, y], x, y]]
fxx[x, y]
fxy[x, y]
Derivative[2, 0][f][2, 3]
Derivative[1, 1][f][2, 3]
Ανάδελτα - Εσσιανή
gradient[x_, y_] := Evaluate[D[f[x, y], {{x, y}}]]
MatrixForm[gradient[x, y]]
hessian[x_, y_] := Evaluate[D[f[x, y], {{x, y}}, {{x, y}}]]
hessian[x,y]//MatrixForm
Ακρότατα
Αυτόματα
Clear["Global`*"]
f[x_] := 36 x^2 - 20 x^3 + 3 x^4
Plot[f[x], {x, -2, 4}]
FindMinimum[f[x], {x, 2.5, 4}]
FindMaximum[f[x], {x, 1, 2.5}]
Minimize[f[x], 2.5 <= x <= 4, {x}]
Maximize[f[x], 1 <= x <= 2.5, {x}]
NMinimize[f[x], 2.5 <= x <= 4, {x}]
NMaximize[f[x], 1 <= x <= 2.5, {x}]
Clear["Global`*"]
f[x_, y_] := x y Exp[-x^2 - y^2]
Minimize[f[x, y], {-3 <= x <= 3, -3 <= y <= 3}, {x, y}]
FindMinimum[{f[x, y], -3 <= x <= 3 && -3 <= y <= 3}, {x, y}]
Κατεύθυνση ανάδελτα
Clear["Global`*"]
f[x_, y_] := 1/(x^2 + y^2 + 1);
xmin = -2;
xmax = 2;
ymin = -2;
ymax = 2;
Plot3D[f[x, y], {x, xmin, xmax}, {y, ymin, ymax},
MeshFunctions -> {#3 &} , MeshStyle -> {Gray},
AxesLabel -> Automatic, ClippingStyle -> None,
ColorFunction -> "DarkRainbow", PlotRange -> All, PlotPoints -> 50]
fDx[x_, y_] := Evaluate[D[f[x, y], x]]
fDy[x_, y_] := Evaluate[D[f[x, y], y]]
fDx[x, y]
fDy[x, y]
gradient[x_, y_] := Evaluate[D[f[x, y], {{x, y}}]];
MatrixForm[gradient[x, y]]
systemD = Solve[{fDx[x, y] == 0, fDy[x, y] == 0}, {x, y}];
{x, y} /. systemD
StreamPlot[gradient[x, y], {x, xmin, xmax}, {y, ymin, ymax}, PlotLegends -> Automatic]
Κριτήρια Εσσιανής
Clear["Global`*"]
min0 = -1;
max0 = 4;
f[x1_, x2_] := x1 x2^3 - 3 x1 x2^2 + x2 x1^3 - 3 x2 x1^2
Plot3D[f[x, y], {x, min0, max0}, {y, min0, max0},
MeshFunctions -> {#3 &}, MeshStyle -> {Gray},
AxesLabel -> Automatic, ClippingStyle -> None,
ColorFunction -> "Rainbow", PlotPoints -> 50,
PlotLegends -> Automatic]
fDx[x_, y_] := Evaluate[D[f[x, y], x]]
fDy[x_, y_] := Evaluate[D[f[x, y], y]]
systemD = Solve[{fDx[x, y] == 0, fDy[x, y] == 0}, {x, y}] // N
fDx2[x_, y_] := Evaluate[D[f[x, y], {x, 2}]]
(*Αν θέλουμε απλά την ορίζουσα της Εσσιανής, γράφουμε*)
detHessian[x_, y_] :=
Evaluate[D[f[x, y], {x, 2}]*D[f[x, y], {y, 2}] - D[f[x, y], x, y]^2]
fDx2[x, y] /. systemD // N
detHessian[x, y] /. systemD // N
Clear["Global`*"]
fDx[x_, y_] := Evaluate[D[f[x, y], x]]
fDy[x_, y_] := Evaluate[D[f[x, y], y]]
f[x_, y_] := 1/(x^2 + y^2 + 1);
systemD = Solve[{fDx[x, y] == 0, fDy[x, y] == 0}, {x, y}];
Plot3D[f[x, y], {x, -2, 2}, {y, -2, 2}, MeshFunctions -> {#3 &} ,
MeshStyle -> {Gray}, AxesLabel -> Automatic, ClippingStyle -> None,
ColorFunction -> "DarkRainbow", PlotRange -> All, PlotPoints -> 50]
hessian[x_, y_] := Evaluate[D[f[x, y], {{x, y}}, {{x, y}}]]
MatrixForm[hessian[x, y]]
Det[hessian[x, y]]
fDx2[x_, y_] := Evaluate[D[f[x, y], {x, 2}]]
fDx2[x, y]/. systemD
Det[hessian[x, y]] /. systemD
Clear["Global`*"]
fDx[x_, y_] := Evaluate[D[f[x, y], x]]
fDy[x_, y_] := Evaluate[D[f[x, y], y]]
f[x_, y_] := -(1/(x^2 + y^2 + 1));
systemD = Solve[{fDx[x, y] == 0, fDy[x, y] == 0}, {x, y}];
Plot3D[f[x, y], {x, -2, 2}, {y, -2, 2}, MeshFunctions -> {#3 &} ,
MeshStyle -> {Gray}, AxesLabel -> Automatic, ClippingStyle -> None,
ColorFunction -> "DarkRainbow", PlotRange -> All, PlotPoints -> 50]
hessian[x_, y_] := Evaluate[D[f[x, y], {{x, y}}, {{x, y}}]]
MatrixForm[hessian[x,y]]
Det[hessian[x, y]]
fDx2[x_, y_] := Evaluate[D[f[x, y], {x, 2}]]
fDx2[x, y] /. systemD
Det[hessian[x, y]] /. systemD
Clear["Global`*"]
fDx[x_, y_] := Evaluate[D[f[x, y], x]]
fDy[x_, y_] := Evaluate[D[f[x, y], y]]
f[x_, y_] := y^2 - x^2;
systemD = Solve[{fDx[x, y] == 0, fDy[x, y] == 0}, {x, y}];
Plot3D[f[x, y], {x, -2, 2}, {y, -2, 2}, MeshFunctions -> {#3 &} ,
MeshStyle -> {Gray}, AxesLabel -> Automatic, ClippingStyle -> None,
ColorFunction -> "DarkRainbow", PlotRange -> All, PlotPoints -> 50]
hessian[x_, y_] := Evaluate[D[f[x, y], {{x, y}}, {{x, y}}]]
MatrixForm[hessian[x, y]]
Det[hessian[x, y]]
Det[hessian[x, y]] /. systemD
Static web notebook
Author kkoud
Created Sun 28 Sep 2025 09:03:34
Outline
Κώστας Κούδας | © 2025